3.1.44 \(\int \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^2 \, dx\) [44]

Optimal. Leaf size=105 \[ \frac {2 \sqrt {a} c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}-\frac {2 a c^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}+\frac {2 a^2 c^2 \tan ^3(e+f x)}{3 f (a+a \sec (e+f x))^{3/2}} \]

[Out]

2*c^2*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))*a^(1/2)/f-2*a*c^2*tan(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)+
2/3*a^2*c^2*tan(f*x+e)^3/f/(a+a*sec(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3989, 3972, 308, 209} \begin {gather*} \frac {2 a^2 c^2 \tan ^3(e+f x)}{3 f (a \sec (e+f x)+a)^{3/2}}+\frac {2 \sqrt {a} c^2 \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{f}-\frac {2 a c^2 \tan (e+f x)}{f \sqrt {a \sec (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^2,x]

[Out]

(2*Sqrt[a]*c^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/f - (2*a*c^2*Tan[e + f*x])/(f*Sqrt[a +
 a*Sec[e + f*x]]) + (2*a^2*c^2*Tan[e + f*x]^3)/(3*f*(a + a*Sec[e + f*x])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 3972

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[-2*(a^(m/2 +
 n + 1/2)/d), Subst[Int[x^m*((2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 3989

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[((-a)*c)^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rubi steps

\begin {align*} \int \sqrt {a+a \sec (e+f x)} (c-c \sec (e+f x))^2 \, dx &=\left (a^2 c^2\right ) \int \frac {\tan ^4(e+f x)}{(a+a \sec (e+f x))^{3/2}} \, dx\\ &=-\frac {\left (2 a^3 c^2\right ) \text {Subst}\left (\int \frac {x^4}{1+a x^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}\\ &=-\frac {\left (2 a^3 c^2\right ) \text {Subst}\left (\int \left (-\frac {1}{a^2}+\frac {x^2}{a}+\frac {1}{a^2 \left (1+a x^2\right )}\right ) \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}\\ &=-\frac {2 a c^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}+\frac {2 a^2 c^2 \tan ^3(e+f x)}{3 f (a+a \sec (e+f x))^{3/2}}-\frac {\left (2 a c^2\right ) \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}\\ &=\frac {2 \sqrt {a} c^2 \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}-\frac {2 a c^2 \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}+\frac {2 a^2 c^2 \tan ^3(e+f x)}{3 f (a+a \sec (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.88, size = 97, normalized size = 0.92 \begin {gather*} -\frac {2 c^2 \left (-3 \text {ArcTan}\left (\sqrt {-1+\sec (e+f x)}\right ) \cos (e+f x)+(-1+4 \cos (e+f x)) \sqrt {-1+\sec (e+f x)}\right ) \sec (e+f x) \sqrt {a (1+\sec (e+f x))} \tan \left (\frac {1}{2} (e+f x)\right )}{3 f \sqrt {-1+\sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^2,x]

[Out]

(-2*c^2*(-3*ArcTan[Sqrt[-1 + Sec[e + f*x]]]*Cos[e + f*x] + (-1 + 4*Cos[e + f*x])*Sqrt[-1 + Sec[e + f*x]])*Sec[
e + f*x]*Sqrt[a*(1 + Sec[e + f*x])]*Tan[(e + f*x)/2])/(3*f*Sqrt[-1 + Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 0.22, size = 142, normalized size = 1.35

method result size
default \(-\frac {c^{2} \left (3 \sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \sqrt {2}}{2 \cos \left (f x +e \right )}\right ) \sqrt {2}-8 \left (\cos ^{2}\left (f x +e \right )\right )+10 \cos \left (f x +e \right )-2\right ) \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}}{3 f \sin \left (f x +e \right ) \cos \left (f x +e \right )}\) \(142\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^2*(a+a*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*c^2/f*(3*sin(f*x+e)*cos(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*arctanh(1/2*(-2*cos(f*x+e)/(cos(f*x+e
)+1))^(1/2)*sin(f*x+e)/cos(f*x+e)*2^(1/2))*2^(1/2)-8*cos(f*x+e)^2+10*cos(f*x+e)-2)*(a*(cos(f*x+e)+1)/cos(f*x+e
))^(1/2)/sin(f*x+e)/cos(f*x+e)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2*(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

1/6*(3*(2*c^2*f*integrate((((cos(6*f*x + 6*e)*cos(2*f*x + 2*e) + 2*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f
*x + 2*e)^2 + sin(6*f*x + 6*e)*sin(2*f*x + 2*e) + 2*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*co
s(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (cos(2*f*x + 2*e)*sin(6*f*x + 6*e) + 2*cos(2*f*x + 2*e)*s
in(4*f*x + 4*e) - cos(6*f*x + 6*e)*sin(2*f*x + 2*e) - 2*cos(4*f*x + 4*e)*sin(2*f*x + 2*e))*sin(5/2*arctan2(sin
(2*f*x + 2*e), cos(2*f*x + 2*e))))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)) - ((cos(2*f*x + 2*
e)*sin(6*f*x + 6*e) + 2*cos(2*f*x + 2*e)*sin(4*f*x + 4*e) - cos(6*f*x + 6*e)*sin(2*f*x + 2*e) - 2*cos(4*f*x +
4*e)*sin(2*f*x + 2*e))*cos(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (cos(6*f*x + 6*e)*cos(2*f*x + 2*
e) + 2*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + sin(6*f*x + 6*e)*sin(2*f*x + 2*e) + 2*sin(4*f*
x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*sin(5/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(1/2*
arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)))/(((2*(2*cos(4*f*x + 4*e) + cos(2*f*x + 2*e))*cos(6*f*x + 6*e
) + cos(6*f*x + 6*e)^2 + 4*cos(4*f*x + 4*e)^2 + 4*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + 2*(
2*sin(4*f*x + 4*e) + sin(2*f*x + 2*e))*sin(6*f*x + 6*e) + sin(6*f*x + 6*e)^2 + 4*sin(4*f*x + 4*e)^2 + 4*sin(4*
f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))^2 +
 (2*(2*cos(4*f*x + 4*e) + cos(2*f*x + 2*e))*cos(6*f*x + 6*e) + cos(6*f*x + 6*e)^2 + 4*cos(4*f*x + 4*e)^2 + 4*c
os(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + 2*(2*sin(4*f*x + 4*e) + sin(2*f*x + 2*e))*sin(6*f*x +
6*e) + sin(6*f*x + 6*e)^2 + 4*sin(4*f*x + 4*e)^2 + 4*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*s
in(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))^2)*(cos(2*f*x + 2*e)^2 + sin(2*f*x + 2*e)^2 + 2*cos(2*
f*x + 2*e) + 1)^(1/4)), x) + 4*c^2*f*integrate((((cos(6*f*x + 6*e)*cos(2*f*x + 2*e) + 2*cos(4*f*x + 4*e)*cos(2
*f*x + 2*e) + cos(2*f*x + 2*e)^2 + sin(6*f*x + 6*e)*sin(2*f*x + 2*e) + 2*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + s
in(2*f*x + 2*e)^2)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (cos(2*f*x + 2*e)*sin(6*f*x + 6*e) +
 2*cos(2*f*x + 2*e)*sin(4*f*x + 4*e) - cos(6*f*x + 6*e)*sin(2*f*x + 2*e) - 2*cos(4*f*x + 4*e)*sin(2*f*x + 2*e)
)*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1
)) - ((cos(2*f*x + 2*e)*sin(6*f*x + 6*e) + 2*cos(2*f*x + 2*e)*sin(4*f*x + 4*e) - cos(6*f*x + 6*e)*sin(2*f*x +
2*e) - 2*cos(4*f*x + 4*e)*sin(2*f*x + 2*e))*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (cos(6*f*x
+ 6*e)*cos(2*f*x + 2*e) + 2*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + sin(6*f*x + 6*e)*sin(2*f*
x + 2*e) + 2*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f
*x + 2*e))))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)))/(((2*(2*cos(4*f*x + 4*e) + cos(2*f*x +
2*e))*cos(6*f*x + 6*e) + cos(6*f*x + 6*e)^2 + 4*cos(4*f*x + 4*e)^2 + 4*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos
(2*f*x + 2*e)^2 + 2*(2*sin(4*f*x + 4*e) + sin(2*f*x + 2*e))*sin(6*f*x + 6*e) + sin(6*f*x + 6*e)^2 + 4*sin(4*f*
x + 4*e)^2 + 4*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2
*f*x + 2*e) + 1))^2 + (2*(2*cos(4*f*x + 4*e) + cos(2*f*x + 2*e))*cos(6*f*x + 6*e) + cos(6*f*x + 6*e)^2 + 4*cos
(4*f*x + 4*e)^2 + 4*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + 2*(2*sin(4*f*x + 4*e) + sin(2*f*x
 + 2*e))*sin(6*f*x + 6*e) + sin(6*f*x + 6*e)^2 + 4*sin(4*f*x + 4*e)^2 + 4*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) +
sin(2*f*x + 2*e)^2)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1))^2)*(cos(2*f*x + 2*e)^2 + sin(2*f*
x + 2*e)^2 + 2*cos(2*f*x + 2*e) + 1)^(1/4)), x) - 6*c^2*f*integrate((((cos(6*f*x + 6*e)*cos(2*f*x + 2*e) + 2*c
os(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + sin(6*f*x + 6*e)*sin(2*f*x + 2*e) + 2*sin(4*f*x + 4*e)
*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (cos(2*f*x + 2*
e)*sin(6*f*x + 6*e) + 2*cos(2*f*x + 2*e)*sin(4*f*x + 4*e) - cos(6*f*x + 6*e)*sin(2*f*x + 2*e) - 2*cos(4*f*x +
4*e)*sin(2*f*x + 2*e))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*cos(1/2*arctan2(sin(2*f*x + 2*e),
 cos(2*f*x + 2*e) + 1)) - ((cos(2*f*x + 2*e)*sin(6*f*x + 6*e) + 2*cos(2*f*x + 2*e)*sin(4*f*x + 4*e) - cos(6*f*
x + 6*e)*sin(2*f*x + 2*e) - 2*cos(4*f*x + 4*e)*sin(2*f*x + 2*e))*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
 2*e))) - (cos(6*f*x + 6*e)*cos(2*f*x + 2*e) + 2*cos(4*f*x + 4*e)*cos(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + sin(
6*f*x + 6*e)*sin(2*f*x + 2*e) + 2*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + sin(2*f*x + 2*e)^2)*sin(1/2*arctan2(sin(
2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1)))/(((2*(2*cos(4*f*x
+ 4*e) + cos(2*f*x + 2*e))*cos(6*f*x + 6*e) + cos(6*f*x + 6*e)^2 + 4*cos(4*f*x + 4*e)^2 + 4*cos(4*f*x + 4*e)*c
os(2*f*x + 2*e) + cos(2*f*x + 2*e)^2 + 2*(2*sin...

________________________________________________________________________________________

Fricas [A]
time = 2.68, size = 340, normalized size = 3.24 \begin {gather*} \left [\frac {3 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + c^{2} \cos \left (f x + e\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right ) - 2 \, {\left (4 \, c^{2} \cos \left (f x + e\right ) - c^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{3 \, {\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (c^{2} \cos \left (f x + e\right )^{2} + c^{2} \cos \left (f x + e\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) + {\left (4 \, c^{2} \cos \left (f x + e\right ) - c^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )\right )}}{3 \, {\left (f \cos \left (f x + e\right )^{2} + f \cos \left (f x + e\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2*(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/3*(3*(c^2*cos(f*x + e)^2 + c^2*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x
+ e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)) - 2*(4*c^2*cos(f*x
 + e) - c^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(f*cos(f*x + e)^2 + f*cos(f*x + e)), -2/3*(
3*(c^2*cos(f*x + e)^2 + c^2*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/
(sqrt(a)*sin(f*x + e))) + (4*c^2*cos(f*x + e) - c^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(f*
cos(f*x + e)^2 + f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} c^{2} \left (\int \left (- 2 \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )}\right )\, dx + \int \sqrt {a \sec {\left (e + f x \right )} + a} \sec ^{2}{\left (e + f x \right )}\, dx + \int \sqrt {a \sec {\left (e + f x \right )} + a}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**2*(a+a*sec(f*x+e))**(1/2),x)

[Out]

c**2*(Integral(-2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x), x) + Integral(sqrt(a*sec(e + f*x) + a)*sec(e + f*x)**
2, x) + Integral(sqrt(a*sec(e + f*x) + a), x))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 232 vs. \(2 (93) = 186\).
time = 1.27, size = 232, normalized size = 2.21 \begin {gather*} -\frac {\frac {3 \, \sqrt {-a} a c^{2} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{{\left | a \right |}} + \frac {2 \, {\left (5 \, \sqrt {2} a^{2} c^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 3 \, \sqrt {2} a^{2} c^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )\right )} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{{\left (a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}}}{3 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^2*(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-1/3*(3*sqrt(-a)*a*c^2*log(abs(2*(sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqrt(-a*tan(1/2*f*x + 1/2*e)^2 + a))^2 - 4*s
qrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*f*x + 1/2*e) - sqrt(-a*tan(1/2*f*x + 1/2*e)^2 + a))^2 + 4*sqrt(2)
*abs(a) - 6*a))*sgn(cos(f*x + e))/abs(a) + 2*(5*sqrt(2)*a^2*c^2*sgn(cos(f*x + e))*tan(1/2*f*x + 1/2*e)^2 - 3*s
qrt(2)*a^2*c^2*sgn(cos(f*x + e)))*tan(1/2*f*x + 1/2*e)/((a*tan(1/2*f*x + 1/2*e)^2 - a)*sqrt(-a*tan(1/2*f*x + 1
/2*e)^2 + a)))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^2 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^2,x)

[Out]

int((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^2, x)

________________________________________________________________________________________